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Abstract
Respiratory and gastrointestinal infections limit an athlete’s availability to train and compete. To better understand how sick 
an athlete will become when they have an infection, a paradigm recently adopted from ecological immunology is presented 
that includes the concepts of immune resistance (the ability to destroy microbes) and immune tolerance (the ability to dampen 
defence yet control infection at a non-damaging level). This affords a new theoretical perspective on how nutrition may influ-
ence athlete immune health; paving the way for focused research efforts on tolerogenic nutritional supplements to reduce 
the infection burden in athletes. Looking through this new lens clarifies why nutritional supplements targeted at improving 
immune resistance in athletes show limited benefits: evidence supporting the old paradigm of immune suppression in athletes 
is lacking. Indeed, there is limited evidence that the dietary practices of athletes suppress immunity, e.g. low-energy availability 
and train- or sleep-low carbohydrate. It goes without saying, irrespective of the dietary preference (omnivorous, vegetarian), 
that athletes are recommended to follow a balanced diet to avoid a frank deficiency of a nutrient required for proper immune 
function. The new theoretical perspective provided sharpens the focus on tolerogenic nutritional supplements shown to reduce 
the infection burden in athletes, e.g. probiotics, vitamin C and vitamin D. Further research should demonstrate the benefits of 
candidate tolerogenic supplements to reduce infection in athletes; without blunting training adaptations and without side effects.
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Key Points 

A new paradigm for exercise immunology is presented 
that considers ‘resistance’ (the strength of the immune 
weaponry) and ‘tolerance’ (the ability to endure 
microbes and dampen defence activity).

A contemporary view is that immune ‘resistance’ is not 
suppressed in athletes under heavy training; as such, it 
is not surprising that nutritional supplements targeted 
towards improving immune ‘resistance’ show limited 
benefits to reduce the infection burden in athletes—‘if it 
ain’t broke, don’t fix it!’

This paradigm of ‘resistance’ and ‘tolerance’ helps to 
explain why nutritional supplements with tolerogenic 
effects (e.g. probiotics, vitamin C and vitamin D) are the 
new targets—tolerogenic supplements may reduce the 
infection burden in athletes.

1 Introduction

“If we could give every individual the right amount 
of nourishment and exercise, not too little and not too 
much, we would have found the safest way to health.”

Hippocrates c. 460—377 B.C.

It has long been known that an individual’s nutritional 
status influences both their susceptibility to infection and 
their response to infection in terms of clinical outcome [1, 
2]. Leyton’s seminal work in British and Russian prisoners 
during the Second World War made an important connec-
tion between malnutrition and tuberculosis morbidity; at a 
time predating vaccination for tuberculosis [1]. The emaci-
ated prisoners shared the same living and working condi-
tions, performing at least 12 h of hard manual labour each 
day on a daily diet providing only ~ 1600 kcal. The Brit-
ish prisoners also received a Red Cross food supplement 
containing 1300 kcal and 45 g protein each day. Despite 
the same exposure to infection, a comparative radiographic 
survey showed a tuberculosis prevalence of 1% in the Brit-
ish prisoners and 19% in the Russian prisoners: tuberculosis 
onset, development and death were more rapid in the mal-
nourished Russian prisoners. Nutrient availability influences 
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immunity because macro- and micro-nutrients are involved 
in a multitude of immune processes, e.g. macronutrients are 
involved in immune cell metabolism and protein synthesis 
and micronutrients in antioxidant defences. That there might 
be an important interaction between nutritional status and 
immune health in athletes under heavy training has received 
much interest and fervour amongst scientists and practition-
ers since Shephard and Shek’s landmark review on this sub-
ject in 1995 [3].

Inadequate nutrition, specifically low energy availability, 
has been placed firmly in the spotlight recently as a risk fac-
tor for infection in elite athletes [4]. Approximately half of 
all female athletes in two recent studies were classified as 
having low energy availability and this was associated with 
a four to eight times higher risk of upper respiratory infec-
tion (URI) in the months preceding the summer Olympics 
[4, 5]. Although these findings are limited to the level of 
association (not causation), they raise interest in the role that 
nutrition may play in maintaining athlete immune health, 
the focus of this review. The aim of this review is not to 
provide an exhaustive account of the influence of individual 
macronutrients and micronutrients on athlete immunity; this 
can be found elsewhere [6]. Rather, the aim is to provide a 
new theoretical perspective to improve our understanding 
of how nutrition may influence athlete immune health and 
set a path for more focused research efforts moving forward. 
The review covers important controversies, misunderstand-
ings and paradoxes in the field. First up, to set the scene, 
recent advancements in our understanding of the infection 
burden in athletes and the prominent infection risk factors 
are covered. Upon this backdrop, the evidence that energy 
deficiency decreases immunity and increases infection in 
athletes is scrutinised. The overly simplistic and longstand-
ing view held by many that nutritional supplements should 
be targeted towards countering the apparently weakened 
immune weaponry (termed ‘resistance’) in otherwise healthy 
elite athletes is also examined.

A new paradigm for exercise immunology, recently 
adopted in human immunology from ecological immunol-
ogy [7], is offered that considers the beneficial tolerogenic 
interactions between pathogens and the immune system 
(‘tolerance’ refers to the ability to endure microbes). Look-
ing through this new lens provides a much clearer picture 
with regard to the rather conflicting and often disappoint-
ing findings of studies investigating nutritional supplements 
and athlete immune health. This new theoretical perspective 
provides a framework for focused research endeavours on 
targeted tolerogenic nutritional supplements to reduce the 
burden of infection in elite athletes.

2  Infections Pose a Serious Problem 
for Athletes

An URI, such as a common cold, might only present an 
unwelcome nuisance for many of us; however, URI and other 
infections such as those that affect the gastrointestinal sys-
tem may limit an elite athlete’s availability to train and take 
part in major competition [8]. After injury, illness (primarily 
respiratory but also gastrointestinal) was the second most 
common reason for an elite athlete to seek medical atten-
tion either during training or when competing at the summer 
or winter Olympic Games [8–10]. In a 3-year surveillance 
study of 322 Olympic athletes, ~ 70% of illnesses recorded 
by medical staff resulted in ‘time loss’ (complete absence) 
from training and competition; the remaining illnesses 
resulted in ‘performance restriction’ (e.g. reduced volume 
and/or intensity of training) [8]. Needless to say, sickness 
absence from training is incompatible with success in elite 
sport, which demands a consistently high training volume. 
In accordance with this logic, the empirical evidence shows 
that medal winners at major sporting events, including the 
Olympics and World Championships, experience fewer URIs 
and shorter lasting URIs than less successful, national-level 
athletes [11, 12]. Furthermore, URI incidence correlates 
negatively with annual training volume in elite athletes, viz. 
‘the less sick, the more an athlete can train’ [13].

Against their better judgement, athletes often choose to 
ignore illness symptoms for fear of missing training and 
competition [14]; likely they feel that achieving success is 
down to an ability to suffer and ‘push on’ through adversity, 
when others would stop. Runners who reported ongoing or 
recent illness symptoms (in the last 8–12 days) before an 
endurance race were more likely to drop out of the event; 
albeit, ~ 98% of runners did reach the finish line [14]. It is 
a widely held belief that heavy exertion may protract the 
course of an ongoing infection [15, 16]. Worse still, heavy 
exertion during, or after incomplete recovery from, a viral 
infection can result in serious medical complications includ-
ing myositis, rhabdomyolysis and myopericarditis; the lat-
ter of which can cause acute arrhythmias leading to sudden 
death [17, 18]. Case reports in human casualties [17, 18], 
corroborated by the findings of animal research [19], indi-
cate that a combination of heavy exertion and viral infection 
(particularly viruses that cause URI) increases the likeli-
hood of life-threatening myopericarditis; likely either as a 
consequence of direct viral invasion of the heart or host-
mediated inflammatory pathology [18]. A corollary of the 
host-mediated inflammation and immune perturbations 
during infection may be altered thermoregulation and an 
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increased risk of life-threatening exertional heat stroke in 
military personnel and athletes [20]. Although limited to 
the level of association, case studies of exertional heat ill-
ness casualties often report recent infection symptoms [21]. 
Exertional heat illness is certainly not confined to military 
settings, or to lesser fit athletes, as half of all elite athletes 
in one recent survey reported having suffered heat illness 
symptoms (e.g. vomiting and collapse) and 1 in 12 reported 
a previous medical diagnosis of exertional heat illness [22]. 
Mindful of these risks, it cannot be overemphasised how 
important it is for athletes to wait until all symptoms have 
cleared before returning to exercise after infection, in line 
with current recommendations [23]. Clearly, respiratory and 
gastrointestinal infections pose a problem for high-level ath-
letes; limiting availability for training and competition and in 
some cases leading to serious medical complications.

2.1  Risk Factors for Infection and Lowered 
Immunity in Athletes

Scholarly research on this topic began in earnest in the 
1980s [24–27], thus it is somewhat surprising that only very 
recently has research begun to scratch the surface regarding 
the prominent risk factors for infection in elite athletes [4, 
11, 12]. Central to the doctrine of early exercise immunology 
was the concept that heavy exercise temporarily decreases 
immunity providing an ‘open window’ for URI and other 
infections [25, 26]. Periods of overreaching and longer term 
mal-adaptation (coined ‘overtraining’) were also associated 
with neuroendocrine modulation, decreased immunity and 
increased URI [28, 29]. These findings supported the pre-
vailing notion of the time that accumulated training stress 
compromised immune health and increased infection risk. 
As such, for many years ‘exercise immunologists’ broadly 
accepted, and focused their research efforts towards coun-
tering heavy exercise as a prominent risk factor for URI in 
athletes. Interested readers are directed elsewhere for com-
prehensive accounts of: the inner workings of the immune 
system [30]; the neuroendocrine modulation of immunity 
in response to stress [31]; and the influence of heavy exer-
cise on immunity [32, 33] and respiratory infection [34]. In 
short, both innate and acquired immunity are often observed 
to decrease transiently during the recovery period after 
prolonged heavy exertion; typically of the order 15–70% 
[24, 35–39]. However, whether these transient changes in 
immunity with acute heavy exercise and intensified training 
are sufficient to increase URI susceptibility in accordance 
with the ‘open window’ theory has been in doubt for some 
time [13, 15, 39–41]. Ekblom et al.’s findings on URI at the 
2000 Stockholm marathon provided the first serious chal-
lenge to the ‘open window’ theory by showing no increase 
in URI symptoms post-race [15]; contrasting earlier reports 
of increased URI after marathons and ultramarathons [27, 

42]. In addition, Ekblom et al.’s observations supported the 
idea that pre-race URI symptoms may have accounted for 
reports of increased URI after endurance events [15].

Recent research highlights prominent risk factors for 
infection in elite athletes and military personnel broadly 
similar to those in the wider population; including, win-
tertime (common cold and influenza season) [11, 12]; 
high levels of psychological stress, anxiety and depres-
sion [5]; poor sleep (< 6 h per night) [43] and long-haul 
travel [12]. By contrast, increases in training load resulted 
in relatively small increases in URI and gastrointestinal 
infection incidence in one recent study in elite swimmers 
[11] and no change in infection incidence in another 
recent study in elite cross-country skiers [12]. Psycho-
logical stress, sleep disturbances and physical exertion 
all influence immunity via activation of the hypotha-
lamic–pituitary–adrenal axis and the sympathetic nerv-
ous-system. Common pathways and effector limbs for 
the body’s response to stress in its various forms give 
rise to increases in circulating catecholamines and glu-
cocorticoid hormones widely acknowledged to modulate 
immune function [31]. That poor mental health [5] and 
poor sleep [43] predict URI in elite athletes and military 
personnel is in keeping with seminal work, in the wider 
population, showing dose-response relationships between 
both psychological stress and the common cold [44] and 
sleep quantity and quality and the common cold [45] after 
intra-nasal inoculation with rhinovirus. Likewise, the 
increased incidence of URI and gastrointestinal infections 
after long-haul flights in elite athletes [12, 46] is a widely 
reported phenomenon in occupational travellers [47]. It 
is quite conceivable that aspects of psychological well-
being (e.g. perceived stress and mood) account, at least in 
part, for the observed alterations in immunity and infec-
tion in studies of poor sleep and long-haul travel [33]; 
and in studies investigating the influence of overreaching 
and mal-adaptation on immune health in athletes; where 
depressed mood is a common feature [28, 48]. Indeed, 
evidence now points to a modulating effect of anxiety 
and perceived stress on the immune response to exercise 
[49] and the risk of URI in highly active individuals [50].

3  How Does Nutrition Influence Immunity 
and Infection?

The immune system’s ability to clear viruses, bacteria and 
other pathogens, termed ‘resistance’, is dependent upon 
an adequate supply of energy from important fuel sources; 
including, glucose, amino acids and fatty acids. In addi-
tion to fuel requirements, cell proliferation requires nucle-
otides for DNA and RNA synthesis and amino acids for 
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protein synthesis. An adequate supply of amino acids is 
also required for the production of proteins such as immu-
noglobulins, cytokines and acute-phase proteins [51]. The 
influence of severe restriction of all nutrients (Maras-
mus) and protein-energy-malnutrition (Kwashiorkor) on 
immunity and infection-related mortality in developing 
countries is well documented [52, 53] (see also Sect. 4). 
Severe energy restriction may also influence immunity 
via activation of the hypothalamic–pituitary–adrenal axis 
and increases in stress hormones: cortisol, for example, is 
widely acknowledged to have anti-inflammatory effects 
[31]. Micronutrients play important roles in nucleotide 
and nucleic acid synthesis (e.g. iron, zinc and magne-
sium) and antioxidant defences that limit tissue damage 
(e.g. vitamins C and E). Antioxidant availability (e.g. 
vitamin C) may be particularly important during heavy 
exertion or infection when oxidative stress increases [54]. 
Some micronutrients can directly influence immune cell 
functions by regulating gene expression (e.g. vitamin D) 
[51, 55].

There are other ways in which nutrition may affect 
immunity and infection; for example, prebiotics and pro-
biotics may influence immunity indirectly by modifying 
the gut microbiota [56] and elemental zinc in oral loz-
enges may directly inhibit viral activity in the oropharyn-
geal region, with purported therapeutic benefits for URI 
[57]. Calder highlights the bi-directional link between 
nutrition, immunity and infection [51]. On the one hand, 
malnutrition has a well-described negative influence on 
immunity and resistance to infection; but on the other 
hand, the widely reported increase in energy requirement 
during infection paradoxically coincides with reduced 
appetite (anorexia) and nutrient malabsorption, hitherto 
a poorly described phenomenon (see Sect. 4).

4  Does Energy Deficiency Decrease 
Immunity and Increase Infection 
in Athletes?

There has been much debate of late about the influence 
of energy deficiency on athlete health [58, 59]. Interest in 
this topic has been stoked by the recent observation that 
low energy availability was associated with increased ill-
ness symptoms in elite female athletes [4, 5]. Besides the 
obvious limitation that this observation was restricted to 
female athletes, the authors recognised the need for stud-
ies to directly assess energy availability (they used the 
LEAF questionnaire) and perform measures of immunity 
and pathology, the latter to confirm infection. These find-
ings are undoubtedly interesting but somewhat at odds 
with the instructive literature on the influence of anorexia 
nervosa and protein-energy-malnutrition on immunity and 

infection; and the findings of studies examining immunity 
during moderate and severe energy restriction in athletic 
and non-athletic populations.

Paradoxically, anorexia nervosa is considered to be 
protective against infection, at least until the condition 
is extremely severe (body mass index [BMI] < 15 kg/m2) 
[60–62]; moreover, infections are reported to occur read-
ily upon refeeding [63, 64]. Recent research sheds some 
light on this paradox by showing that anorexia improves 
immune tolerance and survival during bacterial infection 
(‘starve a fever …’) yet potentiates the progression and 
lethality of viral infection (‘… feed a cold’) [65]. Immu-
nity is surprisingly well preserved in patients with ano-
rexia nervosa. Patients tend to have increased infections 
only in the most advanced states of hospitalisation; typi-
cally when ≥ 40% body weight has been lost and there is 
evidence of decreased cell-mediated immunity (delayed-
type hypersensitivity), and decreased humoral immunity 
(serum immunoglobulins); although the latter is less 
markedly affected [61, 66]. Analogous are the findings 
of decreased cellular immunity (lymphoid atrophy, lower 
T-lymphocyte counts and function, delayed-type hyper-
sensitivity) and increased infections in malnourished chil-
dren with severely advanced Kwashiorkor (< 70% body 
weight to height recommendation) [52, 67, 68]. Failure 
to meet the significantly raised energy demands during 
infection likely accounts for the poor infectious outcomes 
in the most severe cases of anorexia nervosa and protein-
energy-malnutrition [68]. The key feature of Kwashior-
kor, widely recognised to suppress immunity and increase 
infection incidence, is low protein intake [52]. The well-
preserved immunity and robust infection resistance typical 
in patients with anorexia nervosa is likely because pro-
tein intake is relatively sufficient (carbohydrate and fat 
intake are typically reduced) [69], unlike the situation in 
starvation where protein deficiency is considered largely 
responsible for immune suppression, e.g. reduced lympho-
cyte proliferation [70]. The important influence of dietary 
protein on immunity has been demonstrated in mice chal-
lenged with influenza [71]. Mice fed a very low protein 
diet exhibited lower virus-specific antibody responses, 
lower influenza specific  CD8+ T lymphocyte counts and 
rapid mortality after influenza infection, compared with 
an isocaloric adequate protein diet. Importantly, increas-
ing protein intake in the mice fed the very low protein 
diet improved protective immunity. Turning our attention 
back to elite female athletes with low energy availabil-
ity, protein intake appears to be more than adequate to 
support immunity; typically exceeding both government 
recommendations (0.8–0.9 g/kg/day) and those proposed 
for endurance athletes (1.2–1.7 g/kg/day) [72, 73]. For 
example, in a group of elite female distance runners 
with low energy availability (BMI 18.9 kg/m2), protein 
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intake was 2.1 g/kg/day, and in those with amenorrhea 
(BMI 18.5 kg/m2; absence of menses ≥ 3 months), pro-
tein intake was 2.4 g/kg/day [73]. As such, there must be 
some other explanation for the increased URI reports in 
elite female athletes with low energy availability. It is con-
ceivable that poor mental health (e.g. stress, anxiety and 
depression), highly prevalent in female athletes with low 
energy availability [4, 74, 75], plays a role in the increased 
URI reports: psychological stress, anxiety and depression 
have a well-known and marked influence on immunity and 
infection resistance [44, 76]. Research is required to solve 
the puzzle that anxiety disorders and depression are also 
highly comorbid with anorexia nervosa [77, 78], yet this 
condition appears to provide some protection against URI 
[60–62].

The findings from randomised controlled trials are also 
informative in answering the question; does energy defi-
ciency decrease immunity and increase infection in athletes? 
A 25% calorie restriction, over a 2-year period in non-obese 
adults (BMI 25.1 kg/m2), resulted in a 10% body weight loss 
but did not decrease in-vivo cell-mediated immunity (skin 
delayed-type hypersensitivity test) or antibody responses to 
T- and B-cell-mediated vaccinations (hepatitis A, tetanus/
diphtheria and pneumococcal); and had no effect on clini-
cal infections [79]. On the contrary, the authors observed 
salubrious benefits of moderate calorie restriction, without 
malnutrition, on inflammation; as demonstrated by 40–50% 
lower circulating C-reactive protein and tumour necrosis 
factor-α. These inflammatory molecules have well-estab-
lished roles in the pathogenesis of multiple chronic diseases 
and aging; as such, the findings align with the contempo-
rary view that dietary restriction without malnutrition elic-
its a healthy phenotype and extends the lifespan [79–81]. 
Of course, the findings of research examining the influ-
ence of long-term moderate energy deficits on immunity 
in non-obese adults are interesting but arguably of limited 
relevance to athletic populations. For example, there are 
obvious population differences in body composition (average 
BMI of 25.1 kg/m2 is considered overweight [79]) and the 
energy deficit in athletic populations typically results from 
high energy expenditure during heavy training, rather than 
calorie restriction. Notwithstanding, studies in athletic and 
military populations investigating short-term severe energy 
restriction (48 h, ~ 90% restriction) and long-term moderate 
energy restriction during training (8 weeks, ~ 25% restric-
tion) show only subtle and short-lived changes in immunity 
[82–84]; and no increase in the immune-modulating hor-
mone, cortisol. Concordant with these findings, low energy 
availability in female and male endurance athletes has lit-
tle effect on circulating cortisol [85]. This is perhaps not 
surprising as a recent meta-analysis showed that circulating 
cortisol increases in states of complete fasting but typically 
not during less severe energy restriction [86]. It is a common 

misconception, and an oversimplification, that increases in 
circulating cortisol always decrease immunity [87]; the real-
ity is more nuanced. For example, increases in circulating 
cortisol during short-term stress (lasting minutes to hours) 
can have adjuvant-like effects that enhance immunity [31, 
88]. In contrast, chronic stress (lasting days to months) can 
disrupt the cortisol circadian rhythm and increase glucocor-
ticoid resistance, with harmful effects on immunity, inflam-
mation and infection resistance [31, 89]. In summary, direct 
evidence to support the notion that energy deficiency of the 
magnitude often reported in elite female athletes compro-
mises immunity is currently lacking.

5  New Theoretical Perspective on Nutrition 
and Athlete Immune Health

Traditionally, immunologists have focused their efforts on 
understanding the immune weaponry at our disposal in the 
fight against infectious pathogens (termed ‘resistance’). 
Ecological immunologists prefer a model describing not 
only resistance but also ‘tolerance’, defined as the ability 
to endure a microbe [7, 90]. Ayres and Schneider elegantly 
describe a paradigm using these concepts ‘resistance’ and 
‘tolerance’ to better understand human-pathogen interac-
tions [91]. Using a castle metaphor, they describe the inhab-
itants of the fortress performing various tasks; including, 
repairing the walls, raising offspring and distributing food. 
At the same time, the inhabitants must decide whether a bat-
tle is worth fighting and the appropriate weapons to use: the 
immune equivalent of ‘choosing your battles wisely’. Key 
to effective tolerance is a proportionate immune response: 
an overly exuberant immune response can cause excessive 
tissue damage and unnecessarily allocate energy resources 
away from vital functions; vice-versa, a weak immune 
response increases susceptibility to damage from the patho-
gen (Fig. 1) [91].

Reactive oxygen species play an important role in host 
defence against infection but increased oxidative stress dur-
ing an immune reponse can result in collateral tissue dam-
age, placing an increased demand on antioxidant scavenging 
during infection. Seminal research in bumblebees has dem-
onstrated the cost of full-blown immune activation for host 
survival: starvation significantly decreased survival time in 
immune-activated compared with immune-naïve bumble-
bees [92]. Given the tissue damage and increased energy 
cost during a full-blown immune response, the immune 
system has likely evolved to control persistent infection at 
a non-damaging level and exhibit tolerance to non-threat-
ening organisms (Fig. 1) [7, 91, 93]. A prime example is 
the mutualistic bacteria that reside in the gut; the immune 
system does not raise a pathogenic response to obliterate 
the grams of lipopolysaccharide in the intestinal lumen 
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[94]. Co-stimulation, by microbe-associated molecular 
patterns (MAMPS) and danger signals from damaged tis-
sue, is required for full immune activation. In addition, the 
localisation of MAMPS and associated pattern recognition 
receptors at the base of intestinal crypts limits contact with 
non-pathogenic microbes; together, co-stimulation and spa-
tial localisation of MAMPS facilitate host tolerance to mutu-
alistic bacteria that reside in the gut [91, 93, 95]. Evolution 
has preferentially selected non-toxic effectors and receptors, 
in accordance with this model of tolerance; for example, 
antimicrobial peptides are more toxic to pathogens than to 
self and Toll-like receptors have a higher affinity for path-
ogen-associated molecules [94]. Homeostasis is achieved 
by an appropriate balance of resistance and tolerance that 
allows us to fight infection, where the signals indicate this 

is necessary, yet maintain a healthy relationship with the 
mutualistic bacteria in our gut (Fig. 1).

This new theoretical perspective may improve our under-
standing of how sick we will become when we have an infec-
tion (in terms of severity and duration) [7], and more clearly 
elucidate a role for nutrition, particularly in terms of toler-
ance (Fig. 1, Sect. 5.2). Of course, it stands to reason that 
a frank deficiency of a nutrient required for proper immune 
function will decrease immune resistance and increase sus-
ceptibility to infection. Examples include the well-known 
influence of dietary protein deficiency on host defence 
(Sect. 4) [52, 70, 71] and evidence that a frank deficiency in 
zinc decreases immunity [96]. However, growing evidence 
indicates that for some nutrients there are times when intakes 
above recommended levels may have beneficial effects on 

Homeostasis
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Symbionts – probiotics 
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Fig. 1  Model of resistance and tolerance in host-pathogen interac-
tions: value of nutritional supplementation. Dark shaded area on the 
left (arrows with solid lines) shows classical view of immune ‘resist-
ance’ where the immune weaponry protects the host by attempting to 
reduce the pathogen burden, e.g. through cell-mediated killing and 
release of reactive oxygen species (ROS). Weak resistance results 
in immunodeficiency and increased risk of infection. In contrast, an 
overly exuberant immune response to a pathogen causes tissue dam-
age and wasteful diversion of energy resources away from other 
important functions. An overly strong immune response is associated 
with autoimmunity and allergy. In this simple model, homeostasis is 
achieved by balancing effector and regulatory sides of the scales. This 
classical model of immune homeostasis overlooks important tolero-
genic interactions with the pathogen. The concept of ‘tolerance’, the 
ability to endure microbes, (light green shaded area on the right and 
arrows with broken lines) has been adopted from ecological immu-

nology where work in invertebrates shows important tolerogenic 
interactions between the host and microbes, the findings of which are 
generalisable to vertebrates [91, 93]. Pathogens influence the mag-
nitude of the immune response by displaying microbe-associated 
molecular patterns (MAMPS) and by stimulating the release of dan-
ger signals from damaged tissue. Tolerance in this model dampens 
defence activity (upper broken arrow) yet controls infection at a non-
damaging level, with the added benefit of a lower energy cost. This 
explains how we tolerate commensal bacteria rather than eliciting an 
immune response to obliterate the large abundance of bacteria in the 
gut. This model also helps to explain why nutritional supplements 
with tolerogenic effects may reduce the burden of infection (e.g. 
reduced severity and duration) in otherwise healthy athletes. IFN-γ 
interferon gamma, Teff effector T cells, TGF-β transforming growth 
factor-beta, Th T-helper lymphocyte, Treg regulatory T cells
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immunity [97]; likely by optimising the delicate balance 
between resistance and tolerance.

Looking through this new lens, illustrated in Fig. 1, brings 
into sharp focus the hitherto rather mixed picture presented 
by studies investigating nutritional supplements and athlete 
immune health. For example, this model helps to explain 
why nutritional supplements with tolerogenic effects may 
reduce the burden of infection in otherwise healthy athletes 
(e.g. reduced severity and duration) (Sect. 5.2). Clearly, its 
no longer sufficient to ask only if a nutritional intervention 
will stop the athlete getting sick; perhaps its more pertinent 
to ask, will the nutritional intervention reduce how sick the 
athlete will get?

5.1  Nutritional Supplements for Immune 
Resistance: If it Ain’t Broke, Don’t Fix it!

As logic would dictate, support for nutritional supplements 
to improve immune resistance (and thus decrease pathogen 
burden) comes largely from studies in those with impaired 
immunity, such as the frail elderly and clinical patients; par-
ticularly in those with poor nutritional status [51, 97]. Over 
the last 25 years or so, exercise immunologists have actively 
researched nutritional supplements to improve immune 
resistance in athletes (Table 1). For much of this period, 
there was a broad acceptance amongst exercise immunolo-
gists that immunity was impaired in athletes under heavy 
training; prompting the search for nutritional countermeas-
ures [98, 99]. A more contemporary view is that the evi-
dence supporting immunosuppression in athletes is lacking 
[39, 41]. Thus, it is not surprising that supplements targeted 
towards immune resistance show limited benefits for athlete 
immunity and host defence: the phrase ‘if it ain’t broke, don’t 
fix it’ comes to mind (Table 1). One exception is the thera-
peutic effect of zinc lozenges for treating the common cold. 
A recent meta-analysis showed that zinc lozenges (75 mg/
day of elemental zinc) reduced URI duration by ~ 3 days 
(33%) when taken < 24 h after the onset of symptoms, and 
for the duration of the illness [57]. Hemilä points out that 
the optimal zinc lozenge dosage and composition need to be 
determined; indeed, many over-the-counter lozenges contain 
too little zinc or contain substances that bind zinc [57].

Although the exact mechanism(s) require elucidation, 
zinc may act as an antiviral agent by increasing interferon 
gamma and decreasing the docking of common cold viruses 
with binding sites; the latter by decreasing levels of intercel-
lular adhesion molecule-1 [100, 101]. The therapeutic effects 
of zinc lozenges for treating URI have also been ascribed to 
antioxidant and anti-inflammatory properties of elemental 
zinc in the lozenge [102]; as such, zinc lozenges may also 
have tolerogenic effects on immunity.

5.2  Tolerogenic Nutritional Supplements: The New 
Targets

Tolerance in this model dampens defence activity yet effec-
tively controls infection at a non-damaging level; it also 
facilitates homeostatic regulation of beneficial intestinal 
microbial communities (Fig. 1). Looking through this lens 
it is easy to see why studies involving nutritional supple-
ments with tolerogenic properties have yielded some posi-
tive effects for reducing the burden of infection in otherwise 
healthy athletes (Table 2). Probiotics (and prebiotics) may 
have tolerogenic effects by influencing intestinal microbial 
communities and the common mucosal immune system [56]; 
the antioxidant effects of vitamin C and the anti-inflamma-
tory effects of vitamin D may improve tolerance, mitigat-
ing against excessive tissue damage during infection [54, 
55, 91]. As mentioned previously, the therapeutic effects of 
zinc lozenges for treating the common cold, although prin-
cipally considered to reduce the pathogen burden (improved 
resistance), have also been attributed to antioxidant and anti-
inflammatory (tolerogenic) properties of zinc [102].

5.2.1  Probiotics

Probiotics are live microorganisms that when administered 
regularly and in adequate amounts are thought to confer a 
health benefit on the host by modulating gut-dwelling bacte-
ria (the microbiota) and immunity [137]. There are various 
mechanisms by which probiotics are purported to benefit 
immunity and infection resistance, particularly respiratory 
and gastrointestinal infections; however, thus far these have 
not been clearly elucidated [97]. Probiotics can improve 
immune resistance by reinforcing the intestinal barrier and 
competing with pathogens for both attachment to the gut 
epithelium and for available nutrients. The products of pro-
biotic metabolism (e.g. lactic acid) can also inhibit pathogen 
growth in the gut [138]. Probiotics are considered to have 
important mutualistic benefits for immune health that extend 
beyond the gut; these interactions between the commensal 
microbial community and the host immune system occur 
via the common mucosal immune system [139]. There is 
now broad agreement that probiotics exert important anti-
inflammatory ‘tolerogenic’ effects that maintain homeostasis 
(Fig. 1); for example, probiotics may prevent unnecessary 
inflammatory responses to harmless foreign substances in 
the gut [97].

Results from studies investigating the influence of probi-
otics on athlete immune health are promising and interested 
readers are directed to extensive reviews on the subject [56, 
139]. One placebo-controlled cross-over trial in 20 elite 
distance runners showed that probiotic supplementation 
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(Lactobacillus fermentum) for 28 days reduced the number 
of days of URI and the severity of URI symptoms [140]. 
Another randomised placebo-controlled trial in 64 univer-
sity athletes reported a lower incidence of URI during a 
4-month winter training period in athletes receiving a daily 
probiotic (Lactobacillus casei Shirota) compared with pla-
cebo; this study also reported better maintenance of saliva 
secretory immunoglobulin-A in the probiotic group [122]. 
Four weeks of supplementation with a multi-species pro-
biotic formulation (Lactobacillus, Bifidobacterium and 
Streptococcus) reduced markers of gut permeability and 
symptoms of gastrointestinal discomfort during exercise-
heat-stress [141]. The conclusions of another study were 
that supplementing marathon runners (n = 61) with Lacto-
bacillus rhamnosus daily (vs. placebo n = 58) for 3 months 
before a marathon led to shorter lasting gastrointestinal 
symptoms during the 2 weeks after the race (1 vs. 2.3 days 
in placebo) [142]. Caution is needed when interpreting 
these findings as the percentage of runners who actually 
experienced gastrointestinal symptom episodes during the 
2 weeks after the marathon was, as one might expect, low 
(4% in each group). As such, the sample the authors base 
their rather speculative conclusion on was small (only two 
to three runners in each group) [30]. Whether probiotics 
and prebiotics can prevent travellers’ diarrhoea remains 
unclear and there is some evidence that prophylaxis is 
dependent upon the strain of probiotic given [123]. Not-
withstanding, results from general population studies show 
some beneficial effects of probiotics on URI (Table 2). A 
recent meta-analysis showed that probiotic supplementa-
tion reduced the incidence of URI by approximately half, 
shortened URI duration by approximately 2 days, reduced 
antibiotic prescription rates and resulted in only minor side 
effects [124]. However, only 12 studies were included in 
the meta-analysis (n = 3720) and the quality of evidence 
was rated as low; limitations included the relatively small 
sample sizes, poor controls and unclear procedures for ran-
domisation. Although the available evidence supporting 
probiotics to reduce the infection burden in athletes is by 
no means definitive, studies to date indicate some benefit 
with little evidence of harm. Athletes might therefore con-
sider probiotic supplementation particularly during periods 
of increased URI risk, e.g. in the weeks before and during 
foreign travel [139].

5.2.2  Vitamin C

Vitamin C (ascorbic acid) is a major water-soluble anti-
oxidant that is effective as a scavenger of reactive oxygen 
species in both intracellular and extracellular fluids. Good 
sources of vitamin C include fruit and vegetables and the 
reference nutrient intake for adults is 40 mg/day (UK). 

Vitamin C is found in high concentrations in leucocytes 
but the level falls dramatically during a common cold, when 
oxidative stress increases [143]. As such, there is a a sound 
scientific basis for vitamin C supplementation to improve 
tolerance by mitigating against excessive tissue damage 
during infection [91]. There is also a strong rationale for 
anticipating benefits to reduce URI in athletes who experi-
ence increased oxidative stress during heavy exercise [144]. 
A recent review and a meta-analysis have examined the evi-
dence that daily doses of vitamin C of more than 200 mg 
have prophylactic and therapeutic effects for the common 
cold [54, 125]. In a subgroup of five placebo-controlled 
trials in heavy exercisers (n = 598), including marathon 
runners, skiers and soldiers, vitamin C (0.25–1.0 g/day) 
decreased URI incidence by 52% [125]. For example, in 
a double-blind placebo-controlled design, Peters and col-
leagues showed that 600 mg/day of vitamin C for 3 weeks 
prior to a 90-km ultramarathon reduced the incidence of 
URI symptoms in the 2-week post-race period (33% vs. 
68% in age- and sex-matched control runners) [145]. 
Whether the observed benefit of vitamin C for preventing 
URI symptoms in those under heavy exertion represents a 
real decrease in respiratory viral infection is an important 
avenue for inquiry. The rather high URI symptom incidence 
in the Peters et al. study (68% in placebo) and the observed 
benefit of vitamin C might relate to exercise-induced bron-
choconstriction caused by airway inflammation and injury, 
which is common during heavy exercise [146, 147]. Regard-
less of the mechanism, there are clear benefits of vitamin C 
supplementation (0.25–1.0 g/day) to reduce URI symptoms 
in athletes (Table 2).

Determining whether initiating vitamin C supplementa-
tion after the onset of URI has therapeutic effects is compli-
cated by methodological differences between studies, e.g. 
differences in the timing of initiating vitamin C supplemen-
tation and differences in the duration and dosage of sup-
plementation [125]. Higher daily vitamin C doses may be 
required for treating URI; for example, 200 mg/day of vita-
min C was insufficient to restore leukocyte vitamin C levels 
during URI but at 6 g/day the decline in vitamin C levels was 
abolished [143]. Providing 8 g of vitamin C on the first day 
of a URI shortened URI duration more than 4 g [148] and 
dose-dependent benefits were shown in another trial provid-
ing 3 g/day and 6 g/day of vitamin C [149]. Hemilä et al. 
suggest that future therapeutic trials in adults should use 
doses that exceed 8 g/day of vitamin C [125].

One area of uncertainty is whether regular high-dose 
vitamin C supplementation (1 g/day) blunts some of the 
adaptations to endurance training [150, 151]. The authors 
of one study caution against high-dose antioxidant sup-
plementation during endurance training to avoid blunting 
cellular adaptations [152]. However, whether high-dose 
antioxidant supplementation blunts training adaptations in 
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highly trained athletes has been questioned [153]. As vita-
min C supplementation (0.25–1.0 g/day) is cheap, safe and 
can prevent URI symptoms in those under heavy exertion, 
athletes should consider vitamin C supplementation during 
periods of heightened infection risk, e.g. foreign travel for 
important competition.

5.2.3  Vitamin D

In 1981, the British general practitioner and celebrated 
epidemiologist, R. Edgar Hope-Simpson was the first to 
hypothesise that respiratory viral infections (e.g. epidemic 
influenza) have a ‘seasonal stimulus’ intimately associated 
with solar radiation. The nature of this ‘seasonal stimulus’ 
remained undiscovered until the important immunomodula-
tory effects of the sunlight-dependent secosteroid vitamin 
D were fully recognised [154, 155]. Vitamin D production 
as a result of sunlight ultraviolet B radiation penetrating the 
skin typically provides 80–100% of the body’s vitamin D 
requirements, with a small amount typically coming from 
the diet (good sources include oily fish and egg yolks). The 
recommended daily dietary intake of vitamin D for adults 
(5 µg or 200 IU in the European Union and 15 µg or 600 IU 
in the USA) assumes that no synthesis occurs and all of a 
person’s vitamin D is from food intake, although that will 
rarely occur in practice [55]. It is now clear that vitamin D 
has important roles beyond its well-known effects on cal-
cium and bone homeostasis. Immune cells express the vita-
min D receptor, including antigen-presenting cells, T cells 
and B cells, and these cells are all capable of synthesising 
the biologically active vitamin D metabolite, 1,25-hydroxy 
vitamin D. It is widely accepted that vitamin D plays an 
important role in enhancing innate immunity via the induc-
tion of antimicrobial proteins; yet many of the actions of 
vitamin D on acquired immunity are anti-inflammatory in 
nature. Tolerogenic effects of vitamin D (Fig. 1) prevent 
overly exuberant immune responses following T-cell acti-
vation (e.g. 1,25-hydroxy vitamin D induces development 
of regulatory T cells and inhibits production of interferon-
gamma) [55]. There has been growing interest in the ben-
efits of supplementing vitamin D as studies report vitamin 
D insufficiency (circulating 25(OH)D < 50 nmol/L) in more 
than half of all athletes and military personnel tested during 
the winter, when skin sunlight ultraviolet B is negligible 
[156, 157]. The overwhelming evidence supports avoiding 
vitamin D deficiency (circulating 25(OH)D < 30 nmol/L) to 
maintain immunity and reduce the burden of URI in the gen-
eral population, athletes and military personnel [158–160]. 
A recent meta-analysis reported protective effects of oral 
vitamin D supplementation on respiratory infection (odds 
ratio 0.88); particularly in those deficient for vitamin D at 
baseline (odds ratio 0.30) and in those who received oral 
vitamin D daily or weekly, but not in those receiving one 

or more large boluses [126]. Vitamin D sufficiency can be 
achieved by safe sunlight exposure in the summer [127, 161, 
162] and where screening indicates insufficiency, 1000 IU/
day vitamin  D3 supplementation in the winter (Table 2) [55, 
127].

6  Conclusions

This review provides a new theoretical perspective on how 
nutrition influences athlete immune health. A paradigm 
recently adopted from ecological immunology is pre-
sented that includes immune resistance (ability to destroy 
microbes) and immune tolerance (ability to dampen an 
immune response and control infection at a non-damaging 
level). Through this new lens, it is easy to see why studies 
investigating nutritional supplements targeted at improving 
immune resistance in athletes show limited benefits: evi-
dence supporting immune suppression in athletes is lack-
ing; viz. if it ain’t broke, don’t fix it! This new perspective 
sharpens the focus on nutritional supplements with benefi-
cial tolerogenic properties that reduce the infection burden 
in otherwise healthy athletes; including, probiotics, vitamin 
C and vitamin D. Further research is required to demonstrate 
the benefits of candidate tolerogenic nutritional supplements 
to reduce the infection burden in athletes; without blunting 
training adaptations and without side effects. When consid-
ering nutritional supplementation, athletes must check the 
supplement comes from a reliable source and is tested by an 
established quality assurance programme [121].
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